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(= Outlook

e Catalysis and its importance

e X-ray spectroscopy for catalysis research
e SuperXAS beamline

e Research examples:

Active phase in oxygen evolution electrocatalyst
Selective catalytic reduction of NOx on Cu-species in zeolite

Oxygen activation on Cu-CeO, catalyst
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= Catalysis

e (Catalyst accelerates chemical reaction without being consumed

3. separation
1. binding (desorption)

a (adsorption)
E 2. reaction /

399 3c%m_

Pt surface = catalyst
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= Catalysis and energy

e Catalyst offers more energetically favorable reaction pathway

Free energy

®
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Reaction coordinate
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[(={J=» Application of catalysis

More than 85 % of chemicals are produced with a help of catalysts

e Catalysts clean car and industry exhausts

Electrocatalysts produce zero emission hydrogen fuel

Catalysts are widely used in pharmaceutical industry

Uncatalyzed

Catalyzed
s
P
N
>

Energy

Starting materials:
Matural gas, coal, shale,
tar sands, biomass

=l
T Chemical products:
Y 4
ﬁ Fuels, plastics, medicines &
A

Reaction Progress
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5 Structure of catalysts

* Homogeneous catalysts: molecules in solution

* Heterogeneous catalysts: active component
is dispersed on the surface of a high surface area
support, pressed into pellets and filled into reactor

- ~1m —p ~ 1cm

Reactor Catalyst Pellet

* Electrocatalysts:
high surface area materials
deposited on an electrode

Water
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o =T Relevant length scales in catalysis

> ~1m = ~1cm <+ "~ 1lum <+ "~ 1nm

Reactor Catalyst Pellet Porous Support Active Particles

X-ray absorption spectroscopy (XAS)
(structure of active site on the atomic scale)
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== EXsitu, in situ and operando spectroscopy

Ex situ In situ
(catalyst removed from reactor) (catalyst under specific conditions)
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X-ray spectroscopy allows uncovering
structure — activity relationships

Structure (XAS and XES)

» Activity
(MS,GC, IR.))

Reactants Products

Operando reactor

* no material and pressure gaps
e quantitative information about activity
e quantitative/element specific structural information
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== SuperXOS beamline

Solid state detector

PIPS diode

Pilatus detector Pilatus/Mythen detector

/
A Von Hamos

Spectrometer

S =7 29 T Superbend

source

Quick-XAS T N
~ monochromator
5-crystal Johann :
spectrometer ! Si (111) and Si(311) -

fs laser

Energy range: 4.5-35 keV
Flux : up to 1x10%2 ph/s (@ 12 keV)
Spot size: from 100 x 100 pum?to 5000 x 500 pum?
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Flux at SLS Superbend
source (2.9T)

Flux [Ph/(s mrad® 0.1%BW)]
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2.9 T Superbend
source
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=)= Quick XAS monochromator

Direct drive torque motor
oscillating channel-cut
monochromator

. L Ball Bearing
M" Encoder

~ monochromator A 1-

O. Muller et al. REVIEW OF SCIENTIFIC INSTRUMENTS 86, 093905 (2015)
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How Is Time-Resolution Achieved?
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O. Muller et al. Journal of Physics: Conference Series
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Where does this leave us?

10ms achievable
time-resolution

Time resolution
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Follow chemistry in action
Chemical reaction is triggered att=0s

by fast injection of a chalcogene
source.

O. Muller et al. J. Synchrotron Rad. (2016). 23, 260-266


Presenter
Presentation Notes
Multicomponent copper based quaternary semiconductors such as CZTS (Cu2ZnSnS4) are promising candidates for photon absorber layers



={TJ= Research example 1.

Structure of active phase in oxygen
evolution electrocatalyst
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Oxygen evolution electrocatalyst

» Ba,:SrysCo,gFe;,054 perovskite e Alkaline fuel cell

X B-site cation

Oxygen ion

A -site cation
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(A= Why Ba,Sry;Co,gFey,054 Was chosen?

sl : An oxygen permeation membrane material |
15 d=1.50mm d=1.50mm |
N : - Journal of Membrane Science 172 (2000) 177188
E NATURE | VOL 431 |9 SEPTEMBER 2004 |
< 05
: A high-performance cathode for the
ol

w0 s next generation of solid-oxide fuel

Temperature (°C)

ce“s Zongping Shao & Sossina M. Haile

Materials Science, California Institute of Technology, Pasadena, California 91125,

USA
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Jin Suntivich, - Kevin ]. May,?* Hubert A. Gasteiger,>* John B. Goodenough,* Yang Shao-Horn"%>t




wemepe - Addition of carbon improves oxygen evolution
activity of Ba, :Sr, :Co, gFe, .05 4

with carbon
1 more active
404 —e—BSCF Lu > /
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Fabbri et al. ACS Catalysis , 2014, 4 ,1061,
Fabbri et al., Adv. Energy Mater. 2015, 5, 1402033
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B5 Ex situ Co K-edge XANES

1.4
- Co K-edge
= 1
=
>
B o8 .
-
? . < Addition of carbon
:
2
04
— BSCF-AB
—BSCF
02 &
0 | | |
7700 7750 7800 7850 7900

Energy (eV)

Co?*is the active state?

Fabbri et al. ACS Catalysis , 2014, 4 ,1061,
Fabbri et al., Adv. Energy Mater. 2015, 5, 1402033
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Ex situ Co K-edge XANES: higher Co?* fraction
makes better catalyst

14
| Co Kedge
1.2 4
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SG: sol gel method 0 1 o

FS: flame spray method

Fabbri et al. Nature Materials, 2017, 16, 925
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[(-=}» Operando cell for XAS

Binninger et al., J. Electrochem. Soc. 2016
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= Operando Co K-edge XANES:
Co?* oxidizes into Co3* under operation
conditions and activity increases

Normalized intensity
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Fabbri et al. Nature Materials, 2017, 16, 925
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BS Operando Co K-edge EXAFS

—— 1.2 V RHE, anodic
— —— 1.5V RHE, anodic
< —— 1.5V RHE, cathodic
=
Lo
*
e
= /N
= 7~ ﬁ\
[T ..J \(
N

B
3 A
= A A [\~
% %

] ]

5 6 7

Radial distance /A

 For highly oxygen deficient perovskites, a Co-Co scattering peaks appears at 2.8-3.2 A
e Under operando conditions Co-Co contribution at 3.2 A decreases and at 2.85 A typical
of the CoO(OH) structure increases

Fabbri et al. Nature Materials, 2017, 16, 925
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CoO(OH) is active phase

Fabbri et al. Nature Materials, 2017, 16, 925
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This catalyst is more active than the benchmark

ﬂ"

\i:.

IrO2 catalyst and is very stable

21
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—@— BSCF-FS o 2 4. Steady State at 50°C and 200 mAcm2
1 @ Commercial IrO,
. _ [* ]
20 22 o 0 ’
> P Lo
_ @ * ]
< 1.9 "" 204 @
- . o) .
o ]
& o 1.84 _ ?-
Z 18- | S S
> o
d 1.6
174 o » | —e— BSCF-FS
a) 71 e Commercial IrO, b)
o -
16 T . T il T i T . T . T L | 12 T il T i T T . T
100 150 200 250 300 350 400 0 1 2 3 4 5
Current Density / mAcm?™ Time / hrs

Performance comparison of BSCF-FS and IrOx under operating conditions.
Polarization curves (A) and voltage vs. time at the steady state current density of 200

mAcm (B) obtained for membrane electrode assemblies (MEAs) MEAs having BSCF-FS
and IrOx as anodic electrode.

Fabbri et al. Nature Materials, 2017, 16, 925
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=== Research example 2:

Selective catalytic reduction of NOx on Cu-
species in zeolite
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=== Research example 2:

Selective catalytic reduction of NOx on Cu-
species in zeolite

Selective Catalytic Reduction (SCR) of Nitrogen Oxides with Ammonia

Typical SCR reaction:

4NO+4NH, +0, 4N, +6H0
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= Selective catalytic reduction of NOx on Cu-
species in zeolite

A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen
Oxides with Ammonia

o)
@]
>
v o
= » c
] NH; - )
© [l
© <
X 0 ®
@) N< N
0
NO; %
NO 4 :
O_N/ > 1 u “'v-i"
\ \_‘___—/ Nz"‘Hzo

*NO + 0,

Ton V. W. Janssens et al. ACS Catal. 2015, 5, 2832-2845
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Dynamic copper speciation

Time-resolved copper speciation during selective catalytic reduction of NO on Cu-
SSZ-13

Concentration (ppm)

1,000

= NH, off

NO

NH,,

QEXAFS

MS

Time (s)

NO, O, H,0 in N,

A-rays

A. Marberger et al. Nature catalysis, 1, 2018, 221-227
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(=)= Relevant time scales in chemistry and catalysis

299 %o @
3 q.\ : --'f“"’.“% 5 /*
g ey
@Y T 76 %o
Doéoe L ————
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10-18 1015 1012 109 10 103
i | ; i | i | | i 1 1 i | 1 i | 1
v J\_ S
~" ) Y
Bond breaking/ Reaction kinetics Stabili
formation tabllity,

deactivation
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(== Active site structure during catalytic cycle

Long-lived intermediate

TS1 753 ©

Free energy

Reaction coordinate
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Relevant time scales based on turn-over
frequencies (TOF)

Selective alcohol oxidation
ROH + 0, » RHO
AuPd/TiO2, 160 °C [2] W/si0,, 70°C [7]
\ Ammonia synthesis
3H, + N, - 3 NH;

Ru surface, 450 °C, 100 bar [6]

Alkene metathesis
Ethylene hydrogenation RiC=CRy; = Ryp)C =C Ry
C,H, + H, - C,Hg

Pt nanoparticles , 60 °C [5]

I I I I | I I 5>
10 10° 1 Time (s)
[1] Science, 2012, 341,771 CO oxidation
[2] Science, 2006, 311, 696 CO+ 0, - CO,

[3] JACS, 2006, 128, 3956

[4] Nature Comm., 2016, 7, 13057
[5] J. Catal., 127, 342

[6] Nature Chem., 2009, 1, 37

[7] Central Sci., 2016, 2, 569

Pt/Ce0, , 80°C [1]

Methanol synthesis
c0/C0O, + H, - CH;0H
CuZn/Al, O, , 260 °C, 25 bar [4]

Fischer-Tropsch synthesis
CO + 2H, -» (CH,)n + H,0

Co/Al,0, 210°C, 35 bar [3]
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Dynamic copper speciation

Time-resolved copper speciation during selective catalytic reduction of NO on Cu-

SSZ-13

Concentration (ppm)

1,000

—m= NH., off

NO

NH,,

“\'Switch QEXAFS
NH., N,
MS

Time (s)

MO, 05, HQ in M,

A-rays

XAS probes the oxidation state and coordination
geometry of Cu

1 Hz monochromator oscillation frequency
(500 ms per full XAS spectrum)

A. Marberger et al. Nature catalysis, 1, 2018, 221-227



PAUL SCHERRER INSTITUT

=== Dynamic copper speciation

190°C

8960 6,985 5,990 8,995 9,000 9.005
Eneray (sV)

225°C

5,980 6,985 8,990 8,995 9,000 9,005
Energy (eV)

270°C

A. Marberger et al. Nature catalysis, 1, 2018, 221-227

5.980 6,985 8,990 8,995 9,000 9,005
Energy (eV)
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=== Dynamic copper speciation

190°C

2
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b - i
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~ —_
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w H
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225°C b | .
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E o
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Energy (V)
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A. Marberger et al. Nature catalysis, 1, 2018, 221-227
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Energy (eV)
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LC fit weights / a.u.

concentration / ppm

Dynamic copper speciation

i I Ilmw—l

Cu'(NH,), ——Cu'(NH,), Cu'(OH), Cu'-z ——cCu'(NO)),
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—=NH; on —=NH, on NHjon () we(d)

%»NH3 on

0
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L
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— :
400 800 12
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‘ —
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A. Marberger et al. Nature catalysis, 1, 2018, 221-227
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time/s
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RS Increased NO conversion and reduced NH3 slip
with controlled feeding of ammonia

100
80
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40

—o— Standard
—a— Optimized

NO conversion (%)

500
400
300
200
100

NH, (ppm)

—0— Standard
—0O0— Optimized
O | : | ' | ! |

200 300 400 500

Temperature (°C)

A. Marberger et al. Nature catalysis, 1, 2018, 221-227
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(== Take home messages

* Operando methodology allows identifying active sites structure

* Time-resolved XAS methods help to uncover true reaction
intermediates and distinguish them from spectators

e XAS methods uniquely allow for quantitative correlations between
catalytic rates and the reactivity of true active sites
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